Skip to main content

Workflow Templates

Get started quickly with AgentMap using our curated collection of ready-to-use workflow templates. Each template is designed to showcase specific capabilities and can be customized for your unique use cases.

AgentMap Template Library

Ready-to-use workflow templates to get you started quickly

πŸ€– Automation
🟒 Beginner

Weather Notification Bot

Daily weather alerts with intelligent notifications based on conditions

Use Case: Get daily weather updates with contextual advice (umbrella reminders, outfit suggestions)
notificationsweatherdaily-automation
Required Agents:
llmecho
Example Output:
🌀️ NYC Weather Update: 72°F, partly cloudy. Perfect day for a walk! Light jacket recommended for evening.
Configuration Notes:
  • Replace 'input' agent with weather API integration for automation
  • Add scheduling for daily notifications
  • Customize prompt for regional preferences
View CSV Content
GraphName,Node,Edge,Context,AgentType,Success_Next,Failure_Next,Input_Fields,Output_Field,Prompt
WeatherBot,GetWeather,,Get current weather data,input,AnalyzeWeather,,location,weather_data,Enter your location (e.g. New York City):
WeatherBot,AnalyzeWeather,,"{'temperature': 0.7, 'model': 'gpt-3.5-turbo'}",llm,FormatNotification,ErrorHandler,weather_data,analysis,Analyze this weather data and provide practical advice: {weather_data}. Include temperature, conditions, and helpful recommendations for clothing or activities.
WeatherBot,FormatNotification,,Format the final notification,echo,End,,analysis,notification,
WeatherBot,End,,Weather notification complete,echo,,,notification,final_message,Weather update sent successfully!
WeatherBot,ErrorHandler,,Handle errors gracefully,echo,End,,error,error_message,Unable to get weather data. Please try again later.
πŸ“Š Data Processing
🟑 Intermediate

Daily Report Generator

Automated data collection and report generation from multiple sources

Use Case: Generate daily business reports by collecting data from CSV files and creating formatted summaries
reportingautomationdata-aggregation
Required Agents:
csv_readerllmfile_writer
Example Output:
βœ… Daily report saved to reports/daily_report.md with executive summary
Configuration Notes:
  • Ensure CSV files exist in data/ directory
  • Customize report template in LLM prompts
  • Add email integration for automatic distribution
View CSV Content
GraphName,Node,Edge,Context,AgentType,Success_Next,Failure_Next,Input_Fields,Output_Field,Prompt
DailyReport,LoadSalesData,,"{'format': 'records'}",csv_reader,LoadMetrics,ErrorHandler,collection,sales_data,data/daily_sales.csv
DailyReport,LoadMetrics,,"{'format': 'records'}",csv_reader,AnalyzeData,ErrorHandler,collection,metrics_data,data/metrics.csv
DailyReport,AnalyzeData,,"{'temperature': 0.3, 'model': 'gpt-4'}",llm,GenerateReport,ErrorHandler,sales_data|metrics_data,analysis,Create a comprehensive daily business report from this data: Sales: {sales_data} Metrics: {metrics_data}. Include key insights, trends, and actionable recommendations.
DailyReport,GenerateReport,,"{'mode': 'write'}",file_writer,FormatSummary,ErrorHandler,analysis,report_result,reports/daily_report.md
DailyReport,FormatSummary,,Create executive summary,llm,SaveSummary,ErrorHandler,analysis,summary,Create a 3-bullet executive summary of this report: {analysis}
DailyReport,SaveSummary,,"{'mode': 'write'}",file_writer,End,ErrorHandler,summary,summary_result,reports/executive_summary.txt
DailyReport,End,,Report generation complete,echo,,,summary_result,final_message,Daily report generated successfully!
DailyReport,ErrorHandler,,Handle processing errors,echo,End,,error,error_message,Report generation failed: {error}
🧠 AI/LLM
🟑 Intermediate

Customer Feedback Analyzer

Sentiment analysis and categorization of customer feedback

Use Case: Analyze customer feedback for sentiment, extract key themes, and categorize issues
sentiment-analysiscustomer-servicenlp
Required Agents:
csv_readerllmcsv_writer
Example Output:
πŸ“Š Analyzed 150 feedback entries: 68% positive, main themes: shipping delays, product quality
Configuration Notes:
  • Ensure feedback CSV has 'feedback' and 'customer_id' columns
  • Adjust sentiment scale in prompts as needed
  • Add integration with CRM systems for follow-up actions
View CSV Content
GraphName,Node,Edge,Context,AgentType,Success_Next,Failure_Next,Input_Fields,Output_Field,Prompt
FeedbackAnalyzer,LoadFeedback,,"{'format': 'records'}",csv_reader,AnalyzeSentiment,ErrorHandler,collection,feedback_data,data/customer_feedback.csv
FeedbackAnalyzer,AnalyzeSentiment,,"{'temperature': 0.2, 'model': 'gpt-4'}",llm,CategorizeIssues,ErrorHandler,feedback_data,sentiment_analysis,Analyze the sentiment of this customer feedback and rate each on a scale of 1-5 (5=very positive, 1=very negative). Return structured data: {feedback_data}
FeedbackAnalyzer,CategorizeIssues,,"{'temperature': 0.3}",llm,ExtractThemes,ErrorHandler,feedback_data|sentiment_analysis,categories,Categorize these customer issues into main themes (e.g., Product Quality, Customer Service, Shipping, etc.): {feedback_data}. Sentiment context: {sentiment_analysis}
FeedbackAnalyzer,ExtractThemes,,Extract key themes and insights,llm,CompileResults,ErrorHandler,feedback_data|sentiment_analysis|categories,themes,Extract the top 3 themes and actionable insights from this feedback analysis: Feedback: {feedback_data}, Sentiment: {sentiment_analysis}, Categories: {categories}
FeedbackAnalyzer,CompileResults,,Compile final analysis,llm,SaveResults,ErrorHandler,sentiment_analysis|categories|themes,final_analysis,Create a comprehensive customer feedback report with: 1) Sentiment summary 2) Issue categories 3) Key themes 4) Recommended actions. Data: Sentiment: {sentiment_analysis}, Categories: {categories}, Themes: {themes}
FeedbackAnalyzer,SaveResults,,"{'format': 'records', 'mode': 'write'}",csv_writer,End,ErrorHandler,final_analysis,save_result,analysis/feedback_analysis.csv
FeedbackAnalyzer,End,,Analysis complete,echo,,,save_result,final_message,Customer feedback analysis saved successfully!
FeedbackAnalyzer,ErrorHandler,,Handle analysis errors,echo,End,,error,error_message,Feedback analysis failed: {error}
πŸ‘οΈ Monitoring
πŸ”΄ Advanced

Social Media Monitor

Monitor and analyze social media mentions with alert system

Use Case: Monitor social media mentions, analyze sentiment, and trigger alerts for negative feedback
social-mediamonitoringalertssentiment
Required Agents:
json_readerllmbranchingecho
Example Output:
πŸ“± Monitored 25 mentions: 3 high-priority alerts, 1 urgent response needed
Configuration Notes:
  • Configure branching logic: negative sentiment (score < 4) AND high influence (> 7) triggers alerts
  • Integrate with social media APIs for real-time data
  • Set up webhook notifications for urgent alerts
View CSV Content
GraphName,Node,Edge,Context,AgentType,Success_Next,Failure_Next,Input_Fields,Output_Field,Prompt
SocialMonitor,LoadMentions,,"{'format': 'list'}",json_reader,AnalyzeMentions,ErrorHandler,collection,mentions_data,data/social_mentions.json
SocialMonitor,AnalyzeMentions,,"{'temperature': 0.2, 'model': 'gpt-4'}",llm,CheckSentiment,ErrorHandler,mentions_data,analysis,Analyze these social media mentions for sentiment, urgency, and influence level. Return JSON with sentiment_score (1-10), urgency (low/medium/high), and influence_score (1-10): {mentions_data}
SocialMonitor,CheckSentiment,,Check if immediate action needed,branching,TriggerAlert,GenerateReport,analysis,routing_decision,
SocialMonitor,TriggerAlert,,Send immediate alert for negative mentions,echo,GenerateReport,,analysis,alert_sent,🚨 URGENT: Negative social mention detected requiring immediate attention!
SocialMonitor,GenerateReport,,"{'temperature': 0.3}",llm,SaveReport,ErrorHandler,mentions_data|analysis,report,Generate a social media monitoring report including: 1) Mention summary 2) Sentiment trends 3) High-influence accounts 4) Recommended responses. Data: {mentions_data}. Analysis: {analysis}
SocialMonitor,SaveReport,,"{'mode': 'write'}",file_writer,End,ErrorHandler,report,save_result,reports/social_media_report.md
SocialMonitor,End,,Monitoring cycle complete,echo,,,save_result,final_message,Social media monitoring complete. Report saved.
SocialMonitor,ErrorHandler,,Handle monitoring errors,echo,End,,error,error_message,Social media monitoring failed: {error}
πŸ“Š Data Processing
πŸ”΄ Advanced

Data ETL Pipeline

Extract, transform, and load data between different formats and systems

Use Case: Transform data from CSV to JSON format with validation and enrichment
etldata-transformationcsvjson
Required Agents:
csv_readerllmjson_writercsv_writer
Example Output:
πŸ”„ ETL Complete: 1,250 records transformed, 98.5% data quality score
Configuration Notes:
  • Customize field mappings in transform prompts
  • Add data validation rules specific to your use case
  • Configure output directory structure
View CSV Content
GraphName,Node,Edge,Context,AgentType,Success_Next,Failure_Next,Input_Fields,Output_Field,Prompt
DataETL,ExtractData,,"{'format': 'records'}",csv_reader,ValidateData,ErrorHandler,collection,raw_data,data/source_data.csv
DataETL,ValidateData,,"{'temperature': 0.1, 'model': 'gpt-3.5-turbo'}",llm,TransformData,ErrorHandler,raw_data,validation_result,Validate this data for completeness and format. Flag any missing required fields or invalid formats: {raw_data}. Return validation status and list of issues.
DataETL,TransformData,,"{'temperature': 0.2}",llm,EnrichData,ErrorHandler,raw_data|validation_result,transformed_data,Transform this CSV data to JSON format with standardized field names. Apply data cleaning and normalization: {raw_data}. Validation context: {validation_result}
DataETL,EnrichData,,Add calculated fields and metadata,llm,SaveJSON,ErrorHandler,transformed_data,enriched_data,Enrich this data by adding calculated fields, categories, and metadata: {transformed_data}. Add processing timestamp and data quality score.
DataETL,SaveJSON,,"{'format': 'dict', 'indent': 2}",json_writer,CreateSummary,ErrorHandler,enriched_data,json_result,data/output/transformed_data.json
DataETL,CreateSummary,,Generate processing summary,llm,SaveSummary,ErrorHandler,validation_result|json_result,summary,Create an ETL processing summary including: records processed, validation results, transformations applied, and data quality metrics. Validation: {validation_result}, Result: {json_result}
DataETL,SaveSummary,,"{'format': 'records', 'mode': 'write'}",csv_writer,End,ErrorHandler,summary,summary_result,data/output/etl_summary.csv
DataETL,End,,ETL pipeline complete,echo,,,summary_result,final_message,Data ETL pipeline completed successfully!
DataETL,ErrorHandler,,Handle ETL errors,echo,End,,error,error_message,ETL pipeline failed: {error}
🧠 AI/LLM
🟑 Intermediate

Document Summarizer

Intelligent document processing and multi-level summarization

Use Case: Process documents to create executive summaries, key points, and action items
document-processingsummarizationai
Required Agents:
file_readerllmfile_writer
Example Output:
πŸ“„ Document processed: 15-page report summarized into 3 key deliverables
Configuration Notes:
  • Supports PDF, TXT, MD file formats
  • Adjust chunk_size based on document length
  • Customize summary style in prompts
View CSV Content
GraphName,Node,Edge,Context,AgentType,Success_Next,Failure_Next,Input_Fields,Output_Field,Prompt
DocSummarizer,LoadDocument,,"{'chunk_size': 2000, 'should_split': true}",file_reader,CreateSummary,ErrorHandler,collection,document_content,
DocSummarizer,CreateSummary,,"{'temperature': 0.3, 'model': 'gpt-4'}",llm,ExtractKeyPoints,ErrorHandler,document_content,summary,Create a comprehensive summary of this document. Focus on main themes, key findings, and important conclusions: {document_content}
DocSummarizer,ExtractKeyPoints,,Extract actionable insights,llm,CreateExecutiveSummary,ErrorHandler,document_content|summary,key_points,Extract the 5 most important key points and any action items from this document: {document_content}. Context: {summary}
DocSummarizer,CreateExecutiveSummary,,Create executive-level summary,llm,SaveSummary,ErrorHandler,summary|key_points,executive_summary,Create a concise executive summary (2-3 paragraphs) suitable for leadership review: Summary: {summary}, Key Points: {key_points}
DocSummarizer,SaveSummary,,"{'mode': 'write'}",file_writer,SaveKeyPoints,ErrorHandler,executive_summary,summary_result,output/executive_summary.md
DocSummarizer,SaveKeyPoints,,"{'mode': 'write'}",file_writer,SaveFullAnalysis,ErrorHandler,key_points,keypoints_result,output/key_points.md
DocSummarizer,SaveFullAnalysis,,"{'mode': 'write'}",file_writer,End,ErrorHandler,summary,analysis_result,output/full_analysis.md
DocSummarizer,End,,Document processing complete,echo,,,analysis_result,final_message,Document summarization completed successfully!
DocSummarizer,ErrorHandler,,Handle processing errors,echo,End,,error,error_message,Document processing failed: {error}
πŸ‘οΈ Monitoring
🟑 Intermediate

API Health Checker

Monitor API endpoints and generate health reports with alerting

Use Case: Check API endpoint health, analyze response times, and alert on issues
api-monitoringhealth-checkalerts
Required Agents:
json_readerllmbranchingfile_writer
Example Output:
πŸ” Health Check: 12/15 APIs healthy, 2 warnings, 1 critical alert triggered
Configuration Notes:
  • Configure endpoint list in config/api_endpoints.json
  • Set alert thresholds in branching logic
  • Integrate with monitoring tools like Grafana
View CSV Content
GraphName,Node,Edge,Context,AgentType,Success_Next,Failure_Next,Input_Fields,Output_Field,Prompt
APIHealthCheck,LoadEndpoints,,"{'format': 'list'}",json_reader,AnalyzeHealth,ErrorHandler,collection,endpoints_data,config/api_endpoints.json
APIHealthCheck,AnalyzeHealth,,"{'temperature': 0.1, 'model': 'gpt-3.5-turbo'}",llm,CheckStatus,ErrorHandler,endpoints_data,health_analysis,Analyze this API health data and determine status for each endpoint. Look for response times >500ms, error rates >1%, and downtime. Return structured status: {endpoints_data}
APIHealthCheck,CheckStatus,,Determine if alerts needed,branching,TriggerAlert,GenerateReport,health_analysis,alert_decision,
APIHealthCheck,TriggerAlert,,Send critical alerts,echo,GenerateReport,,health_analysis,alert_sent,🚨 API ALERT: Critical endpoints detected requiring immediate attention!
APIHealthCheck,GenerateReport,,"{'temperature': 0.2}",llm,SaveReport,ErrorHandler,endpoints_data|health_analysis,health_report,Generate a comprehensive API health report including: 1) Endpoint status summary 2) Performance metrics 3) Error analysis 4) Recommendations. Data: {endpoints_data}. Analysis: {health_analysis}
APIHealthCheck,SaveReport,,"{'mode': 'write'}",file_writer,CreateDashboard,ErrorHandler,health_report,report_result,reports/api_health_report.md
APIHealthCheck,CreateDashboard,,Create monitoring dashboard data,llm,SaveDashboard,ErrorHandler,health_analysis,dashboard_data,Create dashboard-ready JSON data from this health analysis for visualization: {health_analysis}
APIHealthCheck,SaveDashboard,,"{'mode': 'write'}",file_writer,End,ErrorHandler,dashboard_data,dashboard_result,monitoring/dashboard_data.json
APIHealthCheck,End,,Health check complete,echo,,,dashboard_result,final_message,API health check completed. Reports generated.
APIHealthCheck,ErrorHandler,,Handle monitoring errors,echo,End,,error,error_message,API health check failed: {error}
🧠 AI/LLM
🟒 Beginner

Email Classifier

Intelligent email categorization and priority routing system

Use Case: Automatically categorize and prioritize incoming emails based on content and sender
email-processingclassificationautomation
Required Agents:
csv_readerllmbranchingcsv_writer
Example Output:
πŸ“§ Processed 45 emails: 3 urgent, 15 support tickets, 12 sales inquiries
Configuration Notes:
  • Ensure email CSV has 'subject', 'sender', 'content' columns
  • Configure urgency keywords for branching logic
  • Add integration with email systems for automation
View CSV Content
GraphName,Node,Edge,Context,AgentType,Success_Next,Failure_Next,Input_Fields,Output_Field,Prompt
EmailClassifier,LoadEmails,,"{'format': 'records'}",csv_reader,ClassifyEmails,ErrorHandler,collection,email_data,data/incoming_emails.csv
EmailClassifier,ClassifyEmails,,"{'temperature': 0.2, 'model': 'gpt-3.5-turbo'}",llm,DeterminePriority,ErrorHandler,email_data,classification,Classify these emails into categories: Support, Sales, Marketing, Technical, Urgent. Also determine sentiment (positive/neutral/negative): {email_data}
EmailClassifier,DeterminePriority,,Assess priority level,llm,RouteEmails,ErrorHandler,email_data|classification,priority_assessment,Determine priority level (High/Medium/Low) for each email based on content urgency, sender importance, and keywords: {email_data}. Classification context: {classification}
EmailClassifier,RouteEmails,,Route based on classification,branching,ProcessUrgent,ProcessNormal,priority_assessment,routing_decision,
EmailClassifier,ProcessUrgent,,Handle urgent emails,echo,SaveResults,,priority_assessment,urgent_processed,⚑ Urgent emails flagged for immediate attention
EmailClassifier,ProcessNormal,,Handle normal priority emails,echo,SaveResults,,priority_assessment,normal_processed,πŸ“§ Standard emails categorized and queued
EmailClassifier,SaveResults,,"{'format': 'records', 'mode': 'write'}",csv_writer,GenerateSummary,ErrorHandler,classification|priority_assessment,save_result,data/classified_emails.csv
EmailClassifier,GenerateSummary,,Create processing summary,llm,End,ErrorHandler,classification|priority_assessment,summary,Create an email processing summary with category counts and priority distribution: Classifications: {classification}, Priorities: {priority_assessment}
EmailClassifier,End,,Email classification complete,echo,,,summary,final_message,Email classification completed successfully!
EmailClassifier,ErrorHandler,,Handle classification errors,echo,End,,error,error_message,Email classification failed: {error}
🧠 AI/LLM
🟑 Intermediate

Translation Workflow

Multi-language document translation with quality assurance

Use Case: Translate documents between languages with quality checks and formatting preservation
translationmultilingualqa
Required Agents:
file_readerllmfile_writer
Example Output:
🌐 Translation complete: ENβ†’ES, Quality score: 9.2/10, 3 pages processed
Configuration Notes:
  • Specify target language in initial input
  • Adjust chunk_size for optimal translation context
  • Add glossary terms for domain-specific translation
View CSV Content
GraphName,Node,Edge,Context,AgentType,Success_Next,Failure_Next,Input_Fields,Output_Field,Prompt
TranslationWorkflow,LoadDocument,,"{'chunk_size': 1500, 'should_split': true}",file_reader,DetectLanguage,ErrorHandler,collection,source_content,
TranslationWorkflow,DetectLanguage,,"{'temperature': 0.1}",llm,TranslateContent,ErrorHandler,source_content,language_info,Detect the source language of this text and confirm the target language for translation: {source_content}. Respond with source_language and confidence_level.
TranslationWorkflow,TranslateContent,,"{'temperature': 0.3, 'model': 'gpt-4'}",llm,QualityCheck,ErrorHandler,source_content|language_info,translation,Translate this text from the detected source language to the target language. Preserve formatting, maintain professional tone, and ensure cultural appropriateness: {source_content}. Language context: {language_info}
TranslationWorkflow,QualityCheck,,Review translation quality,llm,FormatOutput,ErrorHandler,source_content|translation,quality_review,Review this translation for accuracy, fluency, and completeness. Rate quality (1-10) and note any issues: Original: {source_content}. Translation: {translation}
TranslationWorkflow,FormatOutput,,Format final translation,llm,SaveTranslation,ErrorHandler,translation|quality_review,formatted_translation,Format the final translation with proper structure and any necessary corrections: {translation}. Quality notes: {quality_review}
TranslationWorkflow,SaveTranslation,,"{'mode': 'write'}",file_writer,SaveQualityReport,ErrorHandler,formatted_translation,translation_result,output/translated_document.txt
TranslationWorkflow,SaveQualityReport,,"{'mode': 'write'}",file_writer,End,ErrorHandler,quality_review,quality_result,output/translation_quality_report.txt
TranslationWorkflow,End,,Translation workflow complete,echo,,,quality_result,final_message,Document translation completed with quality report!
TranslationWorkflow,ErrorHandler,,Handle translation errors,echo,End,,error,error_message,Translation workflow failed: {error}
🧠 AI/LLM
πŸ”΄ Advanced

Content Moderator

AI-powered content moderation with policy compliance checking

Use Case: Moderate user-generated content for safety, policy compliance, and quality standards
content-moderationsafetycompliance
Required Agents:
csv_readerllmbranchingcsv_writer
Example Output:
πŸ›‘οΈ Moderated 200 posts: 185 approved, 12 flagged for review, 3 removed
Configuration Notes:
  • Configure policy rules in branching conditions
  • Adjust safety thresholds based on platform needs
  • Add human review queue for borderline cases
View CSV Content
GraphName,Node,Edge,Context,AgentType,Success_Next,Failure_Next,Input_Fields,Output_Field,Prompt
ContentModerator,LoadContent,,"{'format': 'records'}",csv_reader,InitialScreen,ErrorHandler,collection,content_data,data/user_content.csv
ContentModerator,InitialScreen,,"{'temperature': 0.1, 'model': 'gpt-4'}",llm,DeepAnalysis,ErrorHandler,content_data,initial_screening,Screen this content for obvious policy violations, inappropriate language, and spam. Rate safety level (1-10, 10=completely safe): {content_data}
ContentModerator,DeepAnalysis,,Detailed content analysis,llm,PolicyCheck,ErrorHandler,content_data|initial_screening,detailed_analysis,Perform detailed analysis of this content for: 1) Hate speech 2) Violence 3) Sexual content 4) Harassment 5) Misinformation. Content: {content_data}. Initial screening: {initial_screening}
ContentModerator,PolicyCheck,,Check against content policies,llm,DetermineAction,ErrorHandler,content_data|detailed_analysis,policy_compliance,Check this content against platform policies and community guidelines. Determine if content should be: approved, flagged for review, or removed. Analysis: {detailed_analysis}
ContentModerator,DetermineAction,,Decide on moderation action,branching,FlagContent,ApproveContent,policy_compliance,moderation_decision,
ContentModerator,FlagContent,,Flag problematic content,echo,SaveResults,,policy_compliance,flagged_result,🚩 Content flagged for manual review or removal
ContentModerator,ApproveContent,,Approve safe content,echo,SaveResults,,policy_compliance,approved_result,βœ… Content approved for publication
ContentModerator,SaveResults,,"{'format': 'records', 'mode': 'write'}",csv_writer,GenerateReport,ErrorHandler,initial_screening|detailed_analysis|policy_compliance,save_result,data/moderation_results.csv
ContentModerator,GenerateReport,,Create moderation summary,llm,End,ErrorHandler,initial_screening|detailed_analysis|policy_compliance,moderation_report,Generate a content moderation report with statistics, flagged items, and trend analysis: Screening: {initial_screening}, Analysis: {detailed_analysis}, Compliance: {policy_compliance}
ContentModerator,End,,Content moderation complete,echo,,,moderation_report,final_message,Content moderation completed successfully!
ContentModerator,ErrorHandler,,Handle moderation errors,echo,End,,error,error_message,Content moderation failed: {error}

How to Use Templates​

1. Choose Your Template​

Browse the template library above to find a workflow that matches your needs. Use the category and difficulty filters to narrow down your options.

2. Copy the CSV Content​

Click the "πŸ“‹ Copy CSV" button on any template to copy the workflow definition to your clipboard.

3. Load into AgentMap​

Paste the CSV content into AgentMap using one of these methods:

  • Command Line: Save as a .csv file and run:

    agentmap execute your_workflow.csv
  • Python API: Load directly in your code:

    from agentmap import AgentMap

    # Paste CSV content here
    csv_content = """GraphName,Node,Edge,Context,AgentType,Success_Next,Failure_Next,Input_Fields,Output_Field,Prompt
    ..."""

    agent_map = AgentMap()
    result = agent_map.execute_from_csv_string(csv_content)
  • Playground: Use the "πŸš€ Open in Playground" button to launch the template directly in the AgentMap web interface.

4. Customize Configuration​

Most templates include configuration notes with specific customization instructions. Common customizations include:

  • File Paths: Update input/output paths for your directory structure
  • API Keys: Configure LLM providers and external services
  • Prompts: Modify prompts to match your specific domain or tone
  • Agent Parameters: Adjust temperature, model selection, and other agent settings

Template Categories​

πŸ€– Automation​

Workflows that automate repetitive tasks and processes:

  • Weather Notification Bot: Daily weather alerts with intelligent notifications
  • Email Classifier: Automatic email categorization and priority routing

πŸ“Š Data Processing​

Templates for data transformation, analysis, and reporting:

  • Daily Report Generator: Automated data collection and report generation
  • Data ETL Pipeline: Extract, transform, and load data between systems

🧠 AI/LLM​

AI-powered workflows leveraging language models:

  • Customer Feedback Analyzer: Sentiment analysis and issue categorization
  • Document Summarizer: Multi-level document processing and summarization
  • Translation Workflow: Multi-language translation with quality assurance
  • Content Moderator: AI-powered content moderation and compliance

πŸ‘οΈ Monitoring​

Real-time monitoring and alerting systems:

  • Social Media Monitor: Track mentions with sentiment analysis and alerts
  • API Health Checker: Monitor endpoint health with automated reporting

πŸ”— Integration​

Templates for connecting different systems and services:

  • Data ETL Pipeline: Seamless data movement between formats

πŸ› οΈ Utility​

General-purpose workflows for common tasks:

  • Various utility templates for file processing, data validation, and more

Difficulty Levels​

🟒 Beginner​

Perfect for new users learning AgentMap:

  • Simple, linear workflows
  • Basic agent types (echo, input, llm)
  • Minimal configuration required
  • Clear documentation and examples

🟑 Intermediate​

For users comfortable with AgentMap basics:

  • Multi-step workflows with branching
  • Multiple agent types and data formats
  • Some external integrations
  • Customizable parameters

πŸ”΄ Advanced​

Complex workflows for experienced users:

  • Sophisticated routing and orchestration
  • Multiple data sources and outputs
  • External API integrations
  • Advanced error handling

Customization Guide​

Modifying Prompts​

LLM agent prompts can be customized to match your specific needs:

GraphName,Node,Edge,Context,AgentType,Success_Next,Failure_Next,Input_Fields,Output_Field,Prompt
MyWorkflow,Analyzer,,"{'temperature': 0.3}",llm,Next,,input,analysis,"Analyze this data for trends and insights: {input}. Focus on actionable recommendations."

Tips for prompt customization:

  • Be specific about the desired output format
  • Include examples of good responses
  • Set the appropriate tone (formal, casual, technical)
  • Use field placeholders like {input} for dynamic content

Configuring Agent Context​

Many agents accept context parameters for fine-tuning:

Context
"{'temperature': 0.7, 'model': 'gpt-4', 'max_tokens': 500}"
"{'format': 'records', 'encoding': 'utf-8'}"
"{'chunk_size': 1000, 'should_split': true}"

Common context options:

  • LLM agents: temperature, model, max_tokens
  • File agents: encoding, mode, chunk_size
  • CSV agents: format, delimiter, id_field

Adding Error Handling​

Robust workflows include proper error handling:

GraphName,Node,Edge,Context,AgentType,Success_Next,Failure_Next,Input_Fields,Output_Field,Prompt
MyWorkflow,ProcessData,,Process the data,llm,SaveResult,ErrorHandler,input,result,"Process: {input}"
MyWorkflow,ErrorHandler,,Handle errors gracefully,echo,End,,error,error_msg,"Error occurred: {error}"

File Path Configuration​

Update file paths to match your directory structure:

# Input files
"data/input.csv"
"config/settings.json"

# Output files
"reports/daily_summary.md"
"output/processed_data.csv"

Best Practices​

1. Start Simple​

Begin with beginner templates and gradually work up to more complex workflows as you become comfortable with AgentMap concepts.

2. Test Incrementally​

When customizing templates:

  • Make small changes at a time
  • Test each modification before adding more
  • Use the error messages to guide troubleshooting

3. Organize Your Files​

Create a clear directory structure for your workflows:

my_agentmap_project/
β”œβ”€β”€ workflows/
β”‚ β”œβ”€β”€ daily_reports.csv
β”‚ β”œβ”€β”€ content_moderation.csv
β”‚ └── data_processing.csv
β”œβ”€β”€ data/
β”‚ β”œβ”€β”€ input/
β”‚ └── output/
β”œβ”€β”€ config/
β”‚ └── settings.json
└── reports/

4. Version Control​

Keep your customized workflows in version control to track changes and collaborate with team members.

5. Document Customizations​

When modifying templates, document your changes:

  • What was changed and why
  • Any new dependencies or requirements
  • Expected input/output formats

Troubleshooting​

Common Issues​

CSV Format Errors

  • Ensure all rows have the same number of columns
  • Check for unescaped commas in text fields
  • Verify column headers match expected format

Agent Configuration

  • Validate JSON syntax in Context fields
  • Check that required agent types are available
  • Ensure file paths exist and are accessible

Missing Dependencies

  • Install required Python packages
  • Configure API keys for external services
  • Verify file permissions for input/output directories

Getting Help​

Need assistance with templates?

Contributing Templates​

Have a useful workflow template to share? We welcome contributions!

Template Requirements​

  • Well-documented use case and configuration
  • Tested and working example
  • Clear setup instructions
  • Appropriate difficulty classification

Submission Process​

  1. Create your template following our format
  2. Test thoroughly with sample data
  3. Document configuration requirements
  4. Submit via pull request with description

See our Contributing Guide for detailed submission instructions.


Ready to get started? Choose a template above that matches your use case and start building your first AgentMap workflow!