Agent Catalog
Explore all available AgentMap agent types in this interactive catalog. Use the search and filters to find the perfect agent for your workflow needs.
AgentMap Agent Catalog
Browse all available agent types with examples and configurations
DefaultAgent
default
The simplest agent that logs its execution and returns a message with the prompt.
TestGraph,Start,,Basic node,default,Next,,input,output,Hello World
EchoAgent
echo
Simply returns the input data unchanged.
TestGraph,Echo,,Echo node,echo,Next,,message,response,
BranchingAgent
branching
Used for testing conditional routing. Checks for success/failure indicators in inputs.
TestGraph,Branch,,Decision point,branching,SuccessPath,FailurePath,input,decision,Make a choice
SuccessAgent
success
Testing agent that always succeeds.
TestGraph,AlwaysSucceed,,Success node,success,Next,,input,result,I always succeed
FailureAgent
failure
Testing agent that always fails.
TestGraph,AlwaysFail,,Failure node,failure,Next,,input,result,I always fail
InputAgent
input
Prompts for user input during execution.
TestGraph,GetInput,,User input node,input,Process,,message,user_input,Please enter your name:
LLMAgent
llm
Uses configurable LLM providers for text generation with intelligent routing support.
QAGraph,Question,{"routing_enabled": true, "task_type": "analysis"},Ask a question,llm,Answer,,question,response,Answer this question: {question}
OpenAIAgent
openai
(aliases: gpt
chatgpt
)Backward compatibility wrapper for LLMAgent with OpenAI provider.
QAGraph,Question,{"model": "gpt-4", "temperature": 0.7},Ask a question,openai,Answer,,question,response,Answer this question: {question}
AnthropicAgent
claude
(aliases: claude
)Backward compatibility wrapper for LLMAgent with Anthropic provider.
QAGraph,Summarize,{"model": "claude-3-sonnet-20240229"},Summarize text,claude,Next,,text,summary,Summarize this text in 3 bullet points: {text}
GoogleAgent
gemini
(aliases: gemini
)Backward compatibility wrapper for LLMAgent with Google provider.
QAGraph,Generate,{"model": "gemini-1.0-pro"},Generate content,gemini,Next,,prompt,content,Generate content based on: {prompt}
CSVReaderAgent
csv_reader
Read from CSV files using the unified storage system.
DataGraph,ReadCustomers,{"format": "records", "id_field": "customer_id"},Read customer data,csv_reader,Process,,collection,customers,data/customers.csv
CSVWriterAgent
csv_writer
Write to CSV files using the unified storage system.
DataGraph,WriteResults,{"format": "records", "mode": "write"},Write processed data,csv_writer,End,,data,result,data/output.csv
JSONDocumentReaderAgent
json_reader
Read from JSON files using the unified storage system.
ConfigGraph,ReadConfig,{"format": "dict", "encoding": "utf-8"},Read configuration,json_reader,Process,,collection,config,config/app.json
JSONDocumentWriterAgent
json_writer
Write to JSON files using the unified storage system.
ConfigGraph,SaveState,{"format": "dict", "indent": 2},Save application state,json_writer,End,,state,result,data/state.json
VectorReaderAgent
vector_reader
Work with vector databases for semantic search and document retrieval.
VectorGraph,Search,{"similarity_threshold": 0.8, "max_results": 5},Search for similar documents,vector_reader,Process,,query,search_results,
VectorWriterAgent
vector_writer
Work with vector databases for embedding and storing documents.
VectorGraph,LoadDocs,{"provider": "chroma", "embedding_model": "text-embedding-ada-002"},Load documents into vector store,vector_writer,Search,,documents,load_result,
FileReaderAgent
file_reader
Reads and processes various document types with optional chunking and filtering.
DocGraph,ReadDocs,{"chunk_size": 1000, "chunk_overlap": 200, "should_split": true},Read documents,file_reader,Process,,collection,documents,
FileWriterAgent
file_writer
Writes content to various text-based formats with different write modes.
DocGraph,WriteFile,{"mode": "write", "encoding": "utf-8"},Write document,file_writer,Next,,data,result,path/to/output.txt
OrchestrationAgent
orchestrator
Routes execution to one or more nodes based on context configuration.
WorkflowGraph,Router,{"nodes": "ProcessA|ProcessB|ProcessC"},Route to processors,orchestrator,Collect,Error,available_nodes|data,selected_nodes,
SummaryAgent
summary
Combines multiple inputs into a structured summary.
DataGraph,Combine,{"format": "{key}: {value}\n"},Combine results,summary,Next,Error,result_a|result_b|result_c,combined,
Quick Reference
Agent Categories
- 🏗️ Core Agents - Basic building blocks for workflow control and data flow
- 🧠 LLM Agents - AI-powered agents using language models from various providers
- 💾 Storage Agents - Data persistence and retrieval from various storage systems
- 📁 File Agents - File operations for reading and writing documents
- 🔧 Specialized Agents - Advanced workflow orchestration and data processing
Usage Tips
- Copy CSV Examples - Click the copy button on any agent card to get ready-to-use CSV configuration
- Search by Capability - Use keywords like "LLM", "storage", "file", or "routing" to find relevant agents
- Filter by Category - Use category buttons to narrow down to specific agent types
- Check Context Options - Review the context configuration options to understand customization possibilities
Next Steps
- Quick Start Guide - Build your first workflow using these agents
- CSV Schema Reference - Learn the complete CSV format for defining workflows
- CLI Commands - Use scaffolding to generate custom agent templates
- Agent Development - Create your own custom agents
Common Agent Combinations
Data Processing Pipeline
Pipeline,ReadData,,Read input data,csv_reader,ProcessData,Error,collection,raw_data,data/input.csv
Pipeline,ProcessData,,Transform the data,llm,WriteData,Error,raw_data,processed_data,Clean and format this data: {raw_data}
Pipeline,WriteData,,Save processed data,csv_writer,End,Error,processed_data,result,data/output.csv
Interactive Chatbot with Memory
ChatBot,GetInput,,Get user question,input,ProcessQuestion,End,,question,Enter your question:
ChatBot,ProcessQuestion,{"memory_key":"conversation","max_memory_messages":10},Process with AI,llm,GetInput,Error,question|conversation,response,You are a helpful assistant. Answer: {question}
Document Analysis with Summarization
Analysis,LoadDoc,,Load document,file_reader,AnalyzeDoc,Error,collection,document,
Analysis,AnalyzeDoc,,Analyze content,llm,CreateSummary,Error,document,analysis,Analyze and extract key insights: {document}
Analysis,CreateSummary,{"llm":"anthropic"},Create executive summary,summary,SaveResults,Error,analysis|document,executive_summary,Create a concise executive summary of the analysis
Analysis,SaveResults,,Save results,json_writer,End,Error,executive_summary,result,results/analysis.json
Intelligent Request Routing
Router,GetUserInput,,Get user request,input,RouteRequest,End,message,user_input,What can I help you with?
Router,RouteRequest,{"nodes":"WeatherService|NewsService|CalculatorService"},Route to appropriate service,orchestrator,DefaultHandler,Error,available_nodes|user_input,selected_node,Route the user request to the appropriate service
Router,WeatherService,,Get weather information,default,FormatResponse,Error,user_input,weather_data,Getting weather information
Router,NewsService,,Get latest news,default,FormatResponse,Error,user_input,news_data,Getting latest news
Router,CalculatorService,,Perform calculations,default,FormatResponse,Error,user_input,calc_result,Performing calculation
Router,FormatResponse,{"format":"{key}: {value}"},Format final response,summary,End,Error,weather_data|news_data|calc_result,formatted_response,
Router,DefaultHandler,,Handle unrecognized requests,default,End,Error,user_input,error_response,I don't understand that request
Router,End,,Complete the workflow,echo,,,formatted_response|error_response,final_output,
Parallel Processing with Consolidation
Parallel,SplitWork,,Split work into parallel tasks,default,TaskA|TaskB|TaskC,Error,input_data,split_data,
Parallel,TaskA,,Process part A,default,Consolidate,Error,split_data,result_a,Processing part A
Parallel,TaskB,,Process part B,default,Consolidate,Error,split_data,result_b,Processing part B
Parallel,TaskC,,Process part C,default,Consolidate,Error,split_data,result_c,Processing part C
Parallel,Consolidate,{"separator":"\n\n---\n\n"},Combine all results,summary,End,Error,result_a|result_b|result_c,final_result,
Parallel,End,,Output final results,echo,,,final_result,output,
Multi-Step LLM Analysis with Context
Analysis,LoadData,,Load source data,file_reader,ExtractEntities,Error,collection,raw_data,
Analysis,ExtractEntities,{"task_type":"analysis","routing_enabled":true},Extract key entities,llm,AnalyzeSentiment,Error,raw_data,entities,Extract all important entities and concepts from: {raw_data}
Analysis,AnalyzeSentiment,{"provider":"anthropic"},Analyze sentiment,llm,GenerateInsights,Error,raw_data|entities,sentiment,Analyze the sentiment of this content: {raw_data}
Analysis,GenerateInsights,{"temperature":0.3},Generate insights,llm,CreateReport,Error,entities|sentiment|raw_data,insights,Based on entities {entities} and sentiment {sentiment}, generate key insights about: {raw_data}
Analysis,CreateReport,{"llm":"anthropic"},Create final report,summary,SaveReport,Error,entities|sentiment|insights,executive_report,Create a comprehensive executive report combining all analysis
Analysis,SaveReport,,Save final report,file_writer,End,Error,executive_report,saved_report,reports/analysis_report.md
Analysis,End,,Analysis complete,echo,,,saved_report,completion_status,
Interactive Schema Validator
Want to validate your CSV before running it? Try this interactive validator workflow:
Validator,GetCSV,,Get CSV to validate,input,ValidateSchema,End,csv_content,Enter your CSV content:
Validator,ValidateSchema,,Validate CSV structure,default,ShowResults,Error,csv_content,validation_result,Validating CSV schema and structure
Validator,ShowResults,,Display validation results,echo,GetCSV,End,validation_result,results,
These examples demonstrate the power and flexibility of AgentMap's agent system. Each workflow shows different patterns:
- Linear Processing: Simple step-by-step data transformation
- Parallel Processing: Multiple tasks running simultaneously with consolidation
- Interactive Flows: User input driving workflow decisions
- Intelligent Routing: AI-powered decision making for request handling
- Memory Management: Maintaining context across interactions
- Multi-Modal Analysis: Combining different types of AI analysis
Advanced Configuration Examples
Vector Search with Document Processing
VectorSearch,LoadDocs,{"chunk_size":1000,"should_split":true},Load documents for indexing,file_reader,IndexDocs,Error,collection,documents,
VectorSearch,IndexDocs,{"provider":"chroma","embedding_model":"text-embedding-ada-002"},Index documents in vector store,vector_writer,SearchReady,Error,documents,index_result,
VectorSearch,SearchReady,,Ready for search queries,echo,ProcessQuery,End,index_result,ready_message,Vector search system ready
VectorSearch,ProcessQuery,,Get search query,input,PerformSearch,ProcessQuery,message,search_query,Enter your search query:
VectorSearch,PerformSearch,{"similarity_threshold":0.8,"max_results":5},Search for similar content,vector_reader,AnalyzeResults,Error,search_query,search_results,
VectorSearch,AnalyzeResults,{"routing_enabled":true,"task_type":"analysis"},Analyze search results,llm,DisplayResults,Error,search_query|search_results,analysis,Analyze these search results for query "{search_query}": {search_results}
VectorSearch,DisplayResults,,Display final results,echo,ProcessQuery,End,analysis,final_output,
Multi-Provider LLM Comparison
Comparison,GetPrompt,,Get prompt to compare,input,RunOpenAI|RunAnthropic|RunGoogle,End,message,prompt,Enter prompt to compare across providers:
Comparison,RunOpenAI,{"provider":"openai","model":"gpt-4"},Run with OpenAI,llm,CollectResults,Error,prompt,openai_result,{prompt}
Comparison,RunAnthropic,{"provider":"anthropic","model":"claude-3-sonnet-20240229"},Run with Anthropic,llm,CollectResults,Error,prompt,anthropic_result,{prompt}
Comparison,RunGoogle,{"provider":"google","model":"gemini-1.0-pro"},Run with Google,llm,CollectResults,Error,prompt,google_result,{prompt}
Comparison,CollectResults,{"format":"**{key}**:\n{value}\n\n"},Collect all results,summary,AnalyzeComparison,Error,openai_result|anthropic_result|google_result,all_results,
Comparison,AnalyzeComparison,{"routing_enabled":true},Analyze differences,llm,DisplayComparison,Error,prompt|all_results,comparison_analysis,Compare and analyze the differences between these LLM responses to "{prompt}": {all_results}
Comparison,DisplayComparison,,Show final comparison,echo,GetPrompt,End,comparison_analysis,final_comparison,